Privacy-first clinical AI processing with edge computing and local model deployment
SynThera's on-device AI models bring clinical intelligence directly to the point of care, eliminating the need for cloud connectivity while maintaining the highest levels of privacy and security. Our edge computing architecture deploys lightweight yet powerful AI models locally on medical devices, workstations, and mobile platforms, ensuring patient data never leaves the healthcare facility while providing real-time clinical insights with sub-millisecond latency.
Complete AI inference on-device with zero cloud dependency
Quantized and pruned models for efficient edge deployment
Sub-millisecond prediction latency for critical care scenarios
Collaborative learning without centralized data sharing
<1ms average latency
Real-time processing capability
95% size reduction
Maintained 99.2% accuracy
<100MB memory footprint
Energy-efficient inference
ARM, x86, GPU acceleration
iOS, Android, Windows, Linux
iOS and Android deployment with CoreML and TensorFlow Lite
Desktop deployment with GPU acceleration and ONNX runtime
Embedded systems integration with specialized hardware
On-premise deployment for multi-device coordination
// On-Device Model Deployment const edgeModel = new SynTheraEdgeModel({ modelPath: './models/clinical-prediction-v2.onnx', platform: 'ios', accelerationMode: 'neural-engine' }); // Initialize local model await edgeModel.initialize({ optimization: { quantization: 'int8', pruning: 0.3, batchSize: 1 }, privacy: { dataEncryption: true, modelEncryption: true, telemetryDisabled: true }, performance: { maxMemoryMB: 100, maxInferenceMs: 50, energyOptimized: true } }); // Process patient data locally const localPrediction = await edgeModel.predict({ patientData: { vitals: { hr: 85, bp: '120/80', temp: 98.6 }, symptoms: ['chest-pain', 'fatigue'], demographics: { age: 65, gender: 'M' } }, processing: { realTime: true, confidenceThreshold: 0.85, explanationsEnabled: true } }); // Federated learning update (privacy-preserving) await edgeModel.federatedUpdate({ gradientUpload: false, // Only share model improvements differentialPrivacy: true, encryptedAggregation: true, updateFrequency: 'weekly', participationOptional: true }); // Offline functionality const offlineResult = await edgeModel.predictOffline({ cacheModel: true, fallbackMethods: ['rule-based', 'statistical'], qualityAssurance: true }); console.log('Local prediction:', localPrediction.result); console.log('Confidence score:', localPrediction.confidence); console.log('Processing time:', localPrediction.latencyMs + 'ms'); console.log('Privacy preserved:', localPrediction.privacyCompliant);
FP32 to INT8 conversion reducing model size by 75%
Eliminate redundant parameters while maintaining accuracy
Transfer learning from large models to compact versions
GPU, NPU, and specialized processor optimization
Patient data never leaves the device or healthcare facility
Complete offline functionality with no internet required
Encrypted models protect intellectual property and prevent tampering
Multiple institutions contribute to model improvement without sharing data
Differential privacy ensures individual patient data remains confidential
Secure aggregation protocols combine learning improvements
Local adaptation to specific patient populations and practice patterns
// Federated Learning Configuration const federatedClient = new SynTheraFederatedClient({ hospitalId: 'hospital-123', privacyLevel: 'maximum', encryptionEnabled: true }); // Participate in federated training await federatedClient.joinFederatedTraining({ modelVersion: 'clinical-prediction-v3', privacySettings: { differentialPrivacy: { epsilon: 1.0, // Privacy budget delta: 1e-5, // Privacy parameter clipping: 1.0 // Gradient clipping }, secureAggregation: true, homomorphicEncryption: true, patientConsent: 'explicit' }, contributionLimits: { maxPatients: 1000, trainingRounds: 10, dataRetention: '30-days' }, qualityThresholds: { minAccuracy: 0.92, maxBiasVariance: 0.05, convergenceThreshold: 0.001 } }); // Local model training with privacy preservation const localTraining = await federatedClient.trainLocal({ localDataset: patientRecords, preprocessing: { anonymization: true, featureNormalization: true, outlierRemoval: true }, training: { epochs: 5, batchSize: 32, learningRate: 0.001, regularization: 'l2' }, validation: { crossValidationFolds: 5, holdoutPercentage: 0.2, stratification: true } }); // Submit encrypted gradients for aggregation await federatedClient.submitUpdate({ encryptedGradients: localTraining.gradients, modelMetrics: { accuracy: localTraining.accuracy, loss: localTraining.loss, patientCount: localTraining.sampleSize }, qualityAssurance: { biasCheck: true, fairnessMetrics: true, adversarialRobustness: true } });
Sub-millisecond inference compared to cloud-based processing
No internet dependency ensures continuous availability
Lower bandwidth and cloud computing costs
Local processing eliminates transmission vulnerabilities
Experience the future of privacy-first clinical AI with on-device processing